

Commands and Functions

This manual has been compiled by RAYLASE for its customers and employees.

RAYLASE reserves the right to change the product described in this manual and the informa-
tion contained therein without prior notice.

The software included in the product and this manual itself are protected by copyright. All
rights are reserved. Duplication of this manual in whole or in part, particularly by photocopy-
ing, scanning or imaging, and reproduction by any means are forbidden without the prior, writ-
ten consent of RAYLASE.

 Contents

MN005 / v1.0.3 RAYLASE Commands and Functions 3

TABLE OF CONTENTS

1 INTRODUCTION...4
1.1 Overview.. 4
1.2 Visual Basic Compatibility ... 4
1.3 User Application Program ... 5
1.4 Lists ... 6

2 LIST COMMANDS ..8

3 CONTROL COMMANDS ..25

4 ERROR HANDLING COMMANDS...55

5 UNDOCUMENTED COMMANDS...57

6 UNSUPPORTED COMMANDS ..58

Chapter 1 Introduction

4 RAYLASE Commands and Functions MN005 / v1.0.3

1 INTRODUCTION
The purpose of this manual is to describe the software commands for those customers who
wish to write their own software at DLL level.

It must be emphasized that this is a complex task needing many man hours of work for any-
thing but the simpliest of applications. RAYLASE has graphic based software packages for
immediate use – furthermore, a Marker Library is available which can be used to create indus-
trial control programs or GUIs for customers wanting their own look and feel, but who do not
want to program at the DLL level.

Note: The RAYLASE DLL drivers can be opened by only one application at a time.

1.1 Overview
There are three basic types of commands: Control commands, list commands and error
commands:

Control Commands are mainly used to set up the board’s main functions and start major
actions immediately. They operate asynchronously and are usually sent when the lists are not
being filled or executed. Exceptions are commands such as Stop_Execution, Read_Status.

List Commands are stored in the so called lists for later execution. Once execution is initi-
ated, they are processed and output synchronously to allow accurate control of the galva-
nometer scanners fully synchronized to the laser control.

Error Commands are used for error handling purposes, checking if errors occurred, reading
error codes and messages. Similar to control commands, error commands are also asynchro-
nous and can be sent any time during the application.

1.2 Visual Basic Compatibility
The Visual Basic Boolean data type is represented in a fundamentally different way from the
Visual C++ bool.

This makes it difficult for VB programs to correctly interpret the return values from many of the
command functions which are declared “As Boolean” in the following sections.

Consequently, programmers should use the following general scheme for checking the return
values from the command functions:

Dim Result As Integer

Result = Set_Start_List_1 ’for example
If Result <> 0
Then ’call succeeded
Else ’call failed
End If

Note in particular that the following test will incorrectly appear to fail, even when the function
itself succeeds!

If True = Set_Start_List_1 ’for example
Then ’call succeeded
Else ’call failed
End If

Introduction Chapter 1

MN005 / v1.0.3 RAYLASE Commands and Functions 5

1.3 User Application Program
The structure of a User Application Program will typically be as follows:

 Initialization
 Filling of lists
 Execution of lists
 Closing the Application

Initialization
 Init_Scan_Card // Bringing the card into an initial state
 Set_Mode // Defines the scanner mode
 Load_Cor // Loads a correction file for the scan head
 Set_Gain // Sets up the fine adjustment of the field size

These control commands should be put at the start of the application program. They will ini-
tialize the card and set up the mode of operation to suit a particular laser type, field orientation
and optical characteristics of the lens.

Send the Set_Mode command at the beginning, since many other commands are interpreted
depending on this.

Filling of lists
Next step would then be to prepare list(s) for execution. First select and open the list for stor-
ing list commands with:

 Set_Start_List_1 or Set_Start_List_2

Then fill the list with list commands in the following order:

 Set_Delays, Set_Jump_Parameters_List, Set_Mark_Parameters_List are typically issued
first to set up the parameters for the following marking objects.

 Marking vectors for the object; for instance, Jump, Mark, PolA, PolB, PolC, etc.
 Other list commands …
 Set_End_Of_List as the last command will close the list.

Execution of lists
In this way the list is made ready for execution, which can then be started by sending control
command Execute_List_1 or Execute_List_2. It can also be done by Start_Loop.

Closing the Application
Execution of the list commands continues automatically until all commands have been exe-
cuted. Or, if started by Start_Loop, until Quit_Loop is issued.

Before closing the application it is strongly advised to send control command Re-
move_Scan_Card. It will put the card in a stand-by state and assure its proper functioning in
the next application run.

Chapter 1 Introduction

6 RAYLASE Commands and Functions MN005 / v1.0.3

1.4 Lists
List commands, sent from the application software, which define the marking contour are first
saved in list buffers on the PC. There are two list buffers, list 1 and list 2 provided for this pur-
pose. Each list has an initial size to accommodate 500,000 list commands and will expand if
more list commands are sent.

Load List
Storing data in the lists and processing/execution of the lists can be controlled by a set of
control and list commands. Before sending any list commands to the lists, one of the two lists
must be opened. It is done by the control commands Set_Start_List_1 or Set_Start_List_2.
Only one list can be opened at a time. Opening a list will discard any list commands sent to it
previously and it will disable execution of that list until it is closed.

Once a list is opened, any number of list commands can be sent to it in any order.

Close List
After sending all the commands, a list must be closed in order to allow it to be executed. It is
done by the list command Set_End_Of_List, which is stored as the last command in the list.
After this command no more list commands can be stored in it.

Execute List
Once the list is loaded and closed, it can be executed by sending one of the control com-
mands Execute_List_1 or Execute_List_2.

After starting the execution, the list is defined to be in a “busy” state. The real time system
executes each command until the list command Set_End_Of_List is reached. The “busy” state
exists, therefore, until all list commands have been executed. The state of the lists can be
checked using the command Read_Status.
After that, a list can be restarted with another Execute_List command.

While one list is being executed, the second list can be loaded with list commands.
The newly loaded and closed list can be started only after the other list has finished. This can
also be automated using the command Aut_Change. The Aut_Change command allows con-
tinuous consecutive execution and filling of lists – commonly called “pipelining”. This method
allows a rapid start of execution without having to wait for a large list to be filled.

Stop List
Issuing a Stop_Execution control command during execution immediately stops the execution
and turns off the laser, if necessary in the middle of a vector. Both lists are deleted and must
be loaded again before restarting execution.

Another control command, a Stop_Execution_No_Clear can be used instead, causing the
same effect except that the lists are not cleared after stopping and can be restarted without
refilling.

Only start from the beginning of a list is possible.

Introduction Chapter 1

MN005 / v1.0.3 RAYLASE Commands and Functions 7

Loop Lists
Continuous output is useful when working with a pointer or during testing. A pair of control
commands, Start_Loop and Quit_Loop, can be used for continuous execution of the two lists.
Before sending a Start_Loop command both lists have to be loaded and closed. A Quit_Loop
command will stop the execution after the last command of the active list. The loop can be
restarted by another Start_Loop command. It always starts with list 1, regardless of which list
was executed last. The number of list starts in a loop can be defined with Set_Max_Counts
control command. If no value is set, a default value of 0 is assumed, causing the loop to run
indefinitely.

Continuous output of lists can also be achieved with Loop_To_Start_List_1 or
Loop_To_Start_List_2 list commands. They can be placed anywhere in any of the two lists,
causing execution of the list stated in the command to start after the last list command in the
current list. So, various combinations can be achieved, looping only one list or executing one
list once and then looping only through the second, etc. These commands are also affected
by the Set_Max_Counts command.

External Synchronization
There are two external TTL control inputs (see Hardware Manual), which can be used for
external synchronization of list execution: START_MARK and STOP_MARK.

The START_MARK signal can be polled using Read_Port. An Execute_List_1 or Exe-
cute_List_2 can be issued as soon as the signal goes true. On some controllers, this process
can be automated using the list command Wait_For_External_Start.

The external signal STOP_MARK has a direct effect on list execution, stopping it immediately
it is asserted, even if in the middle of the vector. Lists are not deleted after the STOP_MARK
signal has been asserted and can be restarted afterwards. The STOP_MARK signal is level
sensitive. It must be de-asserted in order to be able to proceed with list execution.

Chapter 2 List Commands

8 RAYLASE Commands and Functions MN005 / v1.0.3

2 LIST COMMANDS
The list commands described below are listed in alphabetical order.

Jump_Abs

Function Fast movement, jump of the beam to the specified coordinate.

Parameter Coordinates represent end of the vector, as 16 bits signed integer numbers.

Result Function Jump_Abs ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Jump_Abs (xval, yval: smallint): bool;

C bool Jump_Abs (short xval, short yval);

Calling
conventions

Basic function Jump_Abs (byval xval%, byval yval%) as boolean

Laser is kept switched off during the execution of command.

A jump delay is issued at the end of the jump command.

Hints

Jump speed and delay should be specified by Set_Jump_Speed and
Set_Jump_Delay, prior to issuing a jump command. If not, default values are used.

References Set_Jump_Parameters_List, Set_Speed, Set_Jump_Speed, Set_Delays,
Set_Jump_Delay Mark_Abs, PolA_Abs, PolB_Abs, PolCAbs, Jump_Rel

Jump_Rel

Function The same functionality as Jump_Abs except that the end position is given relative to
the current position.

Parameter Coordinates of the end of a vector, as 16 bits signed integer offset from the current
position.

Result Function Jump_Rel ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Jump_Rel (xval, yval: smallint): bool;

C bool Jump_ Rel (short xval, short yval);

Calling
conventions

Basic function Jump_ Rel (byval xval%, byval yval%) as boolean

Hints The same hints as for Jump_Abs apply.

References Jump_Abs

 SP-ICE
 RLC

 SP-ICE
 RLC

List Commands Chapter 2

MN005 / v1.0.3 RAYLASE Commands and Functions 9

Laser_Off

Function Laser is switched off for the defined period of time.

Parameter Laser off duration, period of time t in [µs], as 16 bits unsigned integer.
1 ≤ t ≤ 65535
A special case is t = 0; the laser is switched off indefinitely, i.e. the laser will stay off
until switched on by another command.

Result Function Laser_Off ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Laser_Off (t: word): bool;

C bool Laser_Off (unsigned short t);

Calling
conventions

Basic function Laser_Off (byval t%) as boolean

Hints It might be helpful if you read the description of Laser_On list command, first.

References Laser_On, Long_Delay

Laser_On

Function Laser is switched on and then, after a defined period of time, switched off again.

Parameter Laser on duration, period of time t in [µs], as 16 bits unsigned integer.
1 ≤ t ≤ 65534
A special case is t = 0; the laser is switched on indefinitely, i.e. the laser will stay on
until switched off by another command.

Result Function Laser_On ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Laser_On (t: word): bool;

C bool Laser_On (unsigned short t);

Calling
conventions

Basic function Laser_On (byval t%) as boolean

Beam is normally not moved during the execution of this command. This command
can be used for point-and-shoot applications in drilling and grey scale applications.

For very long time periods, use a combination of Laser_On, Long_Delay,
Long_Delay, … and Laser_Off commands. Note, however, that the time resolution
differs in these commands.

Hints

Actual laser parameters will be used.

References Laser_Off, Long_Delay

 SP-ICE
 RLC

 SP-ICE
 RLC

Chapter 2 List Commands

10 RAYLASE Commands and Functions MN005 / v1.0.3

Long_Delay

Function Execution of list will be paused for a defined period of time (t).

Parameter Time delay in [10ìs] units, as 16 bits unsigned integer.
1 ≤ t ≤ 65535 corresponding to 10µs to 655,350µs (0.655350 seconds)

Result Function Long_Delay ok (TRUE) or not ok (FALSE) as boolean.

Pascal Pascal: function Long_Delay (t: word): bool;

C bool Long_Delay (unsigned short t);

Calling
conventions

Basic function Long_Delay (byval t%) as boolean

Hints This command can be used after changing of diode or lamp current with YAG-lasers
in order to get a constant laser power as well as for very long drill periods. Several
Long_Delay commands may be inserted in a list to create even longer delays.

References Laser_On, Laser_Off

Loop_To_Start_List

Function Execution of list commands will continue at the start of the specified list. This can be
the same list or another one allowing continuous output of one or two lists.

Parameter List number (n) either 1 or 2 as a 16 bits unsigned integer.
1 ≤ n ≤ 2

Result Function Loop_To_Start_List ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Loop_To_Start_List (n: word): bool;

C bool Loop_To_Start_List (unsigned short n);

Calling
conventions

Basic function Loop_To_Start_List (byval n%) as boolean.

This list command sets the stated list as the next list to be executed.

This command can be issued anywhere in the list, but execution will proceed with the
current list until all the commands are done and then proceed with the next list.

Hints

This command is affected by the Set_Max_Counts value defining the maximum
number of list starts in the same way as Start_Loop command.

References Wait_For_External_Start, Set_Max_Counts, Start_Loop

 SP-ICE
 RLC

 SP-ICE
 RLC

List Commands Chapter 2

MN005 / v1.0.3 RAYLASE Commands and Functions 11

Mark_Abs

Function Marking of a straight line from actual position to defined coordinate.

Parameter Coordinates representing the end of a vector, as 16 bits signed integer.

Result Function Mark_Abs ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Mark_Abs (xval, yval: smallint): bool;

C bool Mark_Abs (short xval, short yval);

Calling
conventions

Basic function Mark_Abs (byval xval%, byval yval%) as boolean

Marking speed should be defined with Set_Speed or Set_Mark_Speed prior to issu-
ing this command. If not, default values are used.

Before marking, laser is switched on after a laser on delay and then, when the end of
the vector is reached, switched off after a laser off delay.

Hints

Also, at the end of command, a mark delay is inserted.

References Set_Speed, Set_Mark_Parameters_List, Set_Mark_Speed, Set_Delays,
Set_Mark_Delay, Mark_Rel, Jump_Abs, PolA_Abs, PolB_Abs, PolC_Abs

Mark_Immediately

Function Restarts Mark-on-the-Fly sequence.

Result Function Mark_Immediately ok (TRUE) or not ok (FALSE) as Boolean.

Pascal function Mark_Immediately (): bool;

C bool Mark_Immediately ();

Calling
conventions

Basic function Mark_Immediately () as boolean

This command resets the encoder counter to 0, enabling proper synchronisation, and
proceeds to next list command without any delay.

Hints

Can be used even if Mark-on-the-Fly is not used, in which case the command will
just fall through.

Mark_Rel

Function The same functionality as Mark_Abs except that the end position is given relative to
the current position.

Parameter Coordinates of the end of a vector, as 16 bits signed integer offset from the current
position.

Result Function Mark_Rel ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Mark_Rel (xval, yval: smallint): bool;

C bool Mark_ Rel (short xval, short yval);

Calling
conventions

Basic function Mark_ Rel (byval xval%, byval yval%) as boolean

Hints The same hints as for Mark_Abs apply.

References Mark_Abs

 SP-ICE
 RLC

 SP-ICE with
 MOTF-Option
 RLC

 SP-ICE
 RLC

Chapter 2 List Commands

12 RAYLASE Commands and Functions MN005 / v1.0.3

PolA_Abs

Function Marking of a straight line from actual position to defined coordinate.

Parameter Coordinates representing the end of a vector, as 16 bits signed integer.

Result Function PolA_Abs ok (TRUE) or not ok (FALSE) as boolean.

Pascal function PolA_Abs (xval, yval: smallint): bool;

C bool PolA_Abs (short xval, short yval);

Calling
conventions

Basic function PolA_Abs (byval xval%, byval yval%) as boolean

PolA_Abs represents the first vector of a polygon stroke PolA - PolB ... PolB - PolC.

Marking speed should be defined with Set_Speed or Set_Mark_Parameters_List
prior to executing a command. If not, default or previously defined values are used.

Laser will be switched on after laser on delay and remains switched on after reaching
the end of the vector.

Hints

After a PolA command a polygon delay will be inserted.

References Set_Speed, Set_Mark_Parameters_List, Set_Delays, Jump_Abs, PolA_Rel,
Mark_Abs, PolB_Abs, PolC_Abs

PolA_Rel

Function The same functionality as PolA_Abs except that the end position is given relative to
the current position.

Parameter Coordinates of the end of a vector, as 16 bits signed integer offset from the current
position.

Result Function PolA_Rel ok (TRUE) or not ok (FALSE) as boolean.

Pascal function PolA_Rel (xval, yval: smallint): bool;

C bool PolA_ Rel (short xval, short yval);

Calling
conventions

Basic function PolA_ Rel (byval xval%, byval yval%) as boolean

Hints The same hints as for PolA_Abs apply.

References PolA_Abs

 SP-ICE
 RLC

 SP-ICE
 RLC

List Commands Chapter 2

MN005 / v1.0.3 RAYLASE Commands and Functions 13

PolB_Abs

Function Marking of a straight line from actual position to defined coordinate.

Parameter Coordinates representing the end of a vector, as 16 bits signed integer.

Result Function PolB_Abs ok (TRUE) or not ok (FALSE) as boolean.

Pascal function PolB_Abs (xval, yval: smallint): bool;

C bool PolB_Abs (short xval, short yval);

Calling
conventions

Basic function PolB_Abs (byval xval%, byval yval%) as boolean

Marking speed should be defined with Set_Speed or Set_Mark_Parameters_List
prior to executing a command. If not, default or previously defined values are used.

Laser remains switched on after reaching the end of the vector.

Hints

After a PolB command a polygon delay will be inserted.

References Set_Speed, Set_Mark_Parameters_List, Set_Delays, Jump_Abs, PolB_Rel,
Mark_Abs, PolA_Abs, PolC_Abs

PolB_Rel

Function The same functionality as PolB_Abs except that the end position is given relative to
the current position.

Parameter Coordinates of the end of a vector, as 16 bits signed integer offset from the current
position.

Result Function PolB_Rel ok (TRUE) or not ok (FALSE) as boolean.

Pascal function PolB_Rel (xval, yval: smallint): bool;

C bool PolB_ Rel (short xval, short yval);

Calling
conventions

Basic function PolB_ Rel (byval xval%, byval yval%) as boolean

Hints The same hints as for PolB_Abs apply.

References PolB_Abs

 SP-ICE
 RLC

 SP-ICE
 RLC

Chapter 2 List Commands

14 RAYLASE Commands and Functions MN005 / v1.0.3

PolC_Abs

Function Marking of a straight line from actual position to defined coordinate.

Parameter Coordinates representing the end of a vector, as 16 bits signed integer.

Result Function PolC_Abs ok (TRUE) or not ok (FALSE) as boolean.

Pascal function PolC_Abs (xval, yval: smallint): bool;

C bool PolC_Abs (short xval, short yval);

Calling
conventions

Basic function PolC_Abs (byval xval%, byval yval%) as boolean

PolC_Abs represents the last vector of a polygon stroke PolA - PolB...PolB - PolC.

Marking speed should be defined with Set_Speed or Set_Mark_Parameters_List
prior to executing a command. If not, default or previously defined values are used.

Laser will be switched off with laser off delay after reaching the end of the vector.

Hints

After a PolC command a mark delay will be inserted.

References Set_Speed, Set_Mark_Parameters_List, Set_Delays, Jump_Abs, PolC_Rel,
Mark_Abs, PolA_Abs, PolB_Abs

PolC_Rel

Function The same functionality as PolC_Abs except that the end position is given relative to
the current position.

Parameter Coordinates of the end of a vector, as 16 bits signed integer offset from the current
position.

Result Function PolC_Rel ok (TRUE) or not ok (FALSE) as boolean.

Pascal function PolC_Rel (xval, yval: smallint): bool;

C bool PolC_ Rel (short xval, short yval);

Calling
conventions

Basic function PolC_ Rel (byval xval%, byval yval%) as boolean

Hints The same hints as for PolC_Abs apply.

References PolC_Abs

 SP-ICE
 RLC

 SP-ICE
 RLC

List Commands Chapter 2

MN005 / v1.0.3 RAYLASE Commands and Functions 15

Put_Bitmapline_List

Function This command is used to mark one line of a complete bitmap. The command con-
tains all the information required to position and execute a line of grey values along a
line.

Parameter Coordinates representing the start and end points of the line, the grey values as an
array of 16 bit integers and the length of the array.

Result Function Put_Bitmapline_List ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Put_Bitmapline_List (xstartval, ystartval, xendval, ysendval: smal-
lint, pArrayGreyValues [0]:IntArray, ArrayLen: smallint): bool;

C bool Put_Bitmapline_List (short xstartval, short ystartval, short xendval,
short yendval,&arrayGreyValues[0],short num_of_values);

Calling
conventions

Basic function Put_Bitmapline_List (byval xbeginval%, byval beginyval%, byval
xendval%, byval endyval%, IntArray, byval arraysize%) as boolean

This command is intended for use with CO2 lasers. For CW YAG lasers refer to
Put_Bitmapline_List_Ex.

Put_Bitmapline_List should be called repetitively to create a complete bitmap.

Jump speed will be defined with Set_Speed or Set_Jump_Parameters_List.

Laser will be switched on after small jumps for a time period equal to the grey value
in µs.

A jump will be created between the end of one bitmap-line and the beginning of the
next.

Time can be saved by outputting the grey scale lines in opposite directions.

Hints

The length of the array (ArrayLen) must correspond to the number of grey values
presented.

References Set_Speed, Set_Jump_Parameters_List, Set_Delays, Put_Bitmapline_List_Ex,
Set_Auto_Jump_Delay_List

Put_Bitmapline_List_Ex

Function This command has a similar functionality to Put_Bitmapline_List but it is designed for
CW YAG laser.

Result Function Put_Bitmapline_List_Ex ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Put_Bitmapline_List_Ex (xstartval, ystartval, xendval, ysendval:
smallint, pArrayGreyValues [0]:IntArray, ArrayLen: smallint): bool;

C bool Put_Bitmapline_List_Ex (short xstartval, short ystartval, short xend-
val, short yendval,&arrayGreyValues[0],short num_of_values);

Calling
conventions

Basic function Put_Bitmapline_List_Ex (byval xbeginval%, byval beginyval%,
byval xendval%, byval endyval%, IntArray, byval arraysize%) as boolean

References Put_Bitmapline_List

 SP-ICE
 RLC

 SP-ICE
 RLC

Chapter 2 List Commands

16 RAYLASE Commands and Functions MN005 / v1.0.3

Reset_Jump_List

Function Absolute jump to the beginning of the next Mark-on-the-Fly operation. The purpose
of this command is to position the spot at the start of the next object removing any
accumulated target movement. In the case of Wait_For_Counter_Value_Ex, the in-
crements of the encoder, however, will still be counted in the background so that the
reference position is not lost.
Call has to be issued before list commands Wait_For_External_Start,
Wait_For_Counter_Value_Ex or Mark_Immediately.

Parameter Coordinates, 16 bits signed integers, representing end of the vector.

Result Function Reset_Jump_List ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Reset_Jump_List (xval, yval: smallint): bool;

C bool Reset_Jump_List (short xval, short yval);

Calling
conventions

Basic function Reset_Jump_List (byval xval%, byval yval%) as Boolean

Jump speed will be defined with Set_Speed or Set_Jump_Parameters_List.

Laser is switched off.

Hints

A jump delay will be inserted after a jump command.

References Put_Bitmapline_List

Set_Auto_Jump_Delay_List

Function Produces a variable jump delay which depends on the jump length.

Parameter Function Set_Delays ok (TRUE) or not ok (FALSE) as boolean.

Result Function Put_Bitmapline_List ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Set_Delays (jump_auto_delay, jump_length: word): bool;

C bool Set_Delays (unsigned short jump_auto_delay, unsigned short
jump_lenght);

Calling
conventions

Basic function Set_Delays (byval jump_auto_delay %, byval jump_lenght%) as
boolean

This function allows the jump delay to increase linearly from jump_delay to
jump_auto_delay as the jump distance increases from 0 to variable jump_length.

Thus, particularly for marking jobs with lots of small jumps like text, it is possible to
do the small jumps with little delay and the long jumps (say at the end of the line of
text) with a longer delay.

Hints

If jump_auto_delay ≤ jump_delay or jump_length = 0 this command has no effect on
jump delay.

References Set_Delays, Put_Bitmap_Line_List

 SP-ICE with
 MOTF-Option
 RLC

 SP-ICE
 RLC

List Commands Chapter 2

MN005 / v1.0.3 RAYLASE Commands and Functions 17

Set_Delays

Function Sets delays for scan head and laser control.

All delays have to be defined as 16 bits unsigned integers.

50 ≤ step_period ≤ 65535 Step period of micro-vectors in [µs]; [60µs]

50 ≤ jump_del ≤ 65535 Delay after a jump command in [µs]; [200µs]

50 ≤ mark_del ≤ 65535

Delay after a Mark or PolC command in [µs]; [100µs]

50 ≤ poly_del ≤ 65535
and poly_del = 0

Delay after a PolA or PolB command in [µs];
[50µs]

50 ≤ laser_off_del ≤ 65535 Laser off delay after a Mark or PolC command in [µs];
[100µs]

50 ≤ laser_on_del ≤ 65535

Laser on delay after a Mark or PolA command in [µs];
[200µs]

Nd:YAG
0 ≤ t1 ≤ 65535 Q-Switch-cycle period in [µs]; [320µs]
1 ≤ t2 ≤ 65535 Q-Switch-pulse width in [µs]; [200µs]
0 ≤ t3 ≤ 65535 FPS length in [µs]; [0µs]

CO2
0 ≤ t1 ≤ 65535 Output period of laser pulses in [µs]; [320µs]
1 ≤ t2 ≤ 65535 Width of laser pulse in [µs] (laser is processing); [200µs]
0 ≤ t3 ≤ 65535 Width of laser stand-by pulse in [µs] (laser is in stand-by); [0µs]

Parameter

Note: The standby (tickle) frequency is fixed at 5kHz. Typically the laser standby
pulse width is set to 1µs. Refer to manual of your laser supplier.

Result Function Set_Delays ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Set_Delays (step_period, jump_del, mark_del, poly_del, la-
ser_off_del, laser_on_del, t1, t2, t3: word): bool;

C bool Set_Delays (unsigned short step_period, unsigned short jump_del,
unsigned short mark_del, unsigned short poly_del, unsigned short la-
ser_off_del, unsigned short laser_on_del, unsigned short t1, unsigned
short t2, unsigned short t3);

Calling
conventions

Basic function Set_Delays (byval step_period%, byval jump_del%, byval
mark_del%,
byval poly_del%, byval laser_off_del%, byval laser_on_del%, byval t1%,
byval t2%, byval t3%) as boolean

This command should be set before any vector commands in a list. The default val-
ues are shown in square brackets.

The range of values shown are guaranteed to work with all RAYLASE controllers.
For further information about the possible use of shorter values, contact RAYLASE.

A typical value for step_period is 60µs.
The longer step_period is the greater is the time available for loading list commands.

Hints

This command sets the t4 parameter (set by Set_Delays_9_10) to 0.

References Set_Delays_1_2, Set_Delays_3_4, Set_Delays_5_6, Set_Delays_7_8,
Set_Delays_9_10

 SP-ICE
 RLC

Chapter 2 List Commands

18 RAYLASE Commands and Functions MN005 / v1.0.3

Set_Delays_1_2

Function Sets step period and jump delay.

Parameter All values have to be defined as 16 bits unsigned integers.
For a valid range and default value of the parameters look at Set_Delays list com-
mand.

Result Function Set_Delays_1_2 ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Set_Delays_1_2 (step_period, jump_del: word): bool;

C bool Set_Delays (unsigned short step_period, unsigned short jump_del);

Calling
conventions

Basic function Set_Delays (byval step_period%, byval jump_del%) as boolean

Hints The same apply as for Set_Delays

References Set_Delays

Set_Delays_3_4

Function Sets mark and polygon delays.

Parameter All values have to be defined as 16 bits unsigned integers.
For a valid range and default value of the parameters look at Set_Delays list com-
mand.

Result Function Set_Delays_3_4 ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Set_Delays_3_4 (mark_del, poly_del: word): bool;

C bool Set_Delays_3_4 (unsigned short mark_del, unsigned short poly_del);

Calling
conventions

Basic function Set_Delays_3_4 (byval mark_del %, byval poly_del%) as boolean

Hints The same apply as for Set_Delays

References Set_Delays

Set_Delays_5_6

Function Sets laser on and laser off delays.

Parameter All values have to be defined as 16 bits unsigned integers.
For a valid range and default value of the parameters look at Set_Delays list com-
mand.

Result Function Set_Delays_5_6 ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Set_Delays_5_6 (laser_off_del, laser_on_del: word): bool;

C bool Set_Delays_5_6 (unsigned short laser_off_del, unsigned short la-
ser_on_del);

Calling
conventions

Basic function Set_Delays_5_6 (byval laser_off_del %, byval laser_on_del %) as
boolean

Hints The same apply as for Set_Delays

References Set_Delays

 SP-ICE
 RLC

 SP-ICE
 RLC

 SP-ICE
 RLC

List Commands Chapter 2

MN005 / v1.0.3 RAYLASE Commands and Functions 19

Set_Delays_7_8

Function Sets t1 and t2 parameters for laser. The actual meaning depending on the laser type.

Parameter All values have to be defined as 16 bits unsigned integers.
For a description, valid range and default values of the parameters see the
Set_Delays list command.

Result Function Set_Delays_7_8 ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Set_Delays_7_8 (t1, t2: word): bool;

C bool Set_Delays_7_8 (unsigned short t1, unsigned short t2);

Calling
conventions

Basic function Set_Delays_7_8 (byval t1 %, byval t2 %) as boolean

Hints The same apply as for Set_Delays.

References Set_Delays

Set_Delays_9_10

Function Sets t3 and t4 parameters for laser. The actual meaning depending on the laser type.

All values have to be defined as 16 bits unsigned integers.
For a description, valid range and default value of t3 parameter look at Set_Delays
list command.

Parameter

Parameter t4 is used only for Nd:YAG Mode2 lasers. The valid range is:
0 ≤ t4 ≤ 65535 FPS signal in [µs]; [0µs]

If t4 = 0, then Nd:YAG Mode2 version is used. In this case t3 is used for FPS length
and the FPS signal = 10µs.

If t4 > 0, then Nd:YAG Mode3 version applies. See applications manual.

Result Function Set_Delays_9_10 ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Set_Delays_9_10 (t3, t4: word): bool;

C bool Set_Delays_9_10 (unsigned short t3, unsigned short t4);

Calling
conventions

Basic function Set_Delays_9_10 (byval t3 %, byval 4 %) as boolean

The same apply as for Set_Delays. Hints

The Set_Delays command sets t4 parameter to 0.

References Set_Delays

 SP-ICE
 RLC

 SP-ICE
 RLC

Chapter 2 List Commands

20 RAYLASE Commands and Functions MN005 / v1.0.3

Set_End_Of_List

Function Closes the list that was opened with the last Set_Start_List_n command. No more
commands can be stored in the list. It is ready to be executed (see Execute_List_n).

Result Function Set_End_Of_List ok (TRUE) or not ok (FALSE) as boolean

Pascal function Set_End_Of_List: bool;

C bool Set_End_Of_List (void);

Calling
conventions

Basic function Set_End_Of_List () as boolean

This is a list command which also works as a control command, changing the list
status to “closed”. During list execution the command is seen as the last in the list. At
this time, it acts as a trigger for the evaluation of the Aut_Change flag, Loop com-
mand etc.

If there are no open lists, the command has no effects.

The command will close even an empty list with no commands in it, storing itself as
the only command in it and allowing it to be executed as it is. It will not cause any
errors or problems during execution.

Hints

Trying to use Execute_List on a list which is not closed by this command, will cause
an error.

References Set_Start_List_1, Set_Start_List_2, Execute_List_n, Aut_Change

Set_Jump_Parameters_List

Function Sets the jump speed of the galvanometer scanners through step_period and
jump_step_size.

Both parameters have to be defined as 16 bits unsigned integer.

20 ≤ step_period ≤ 65535 Step period of microvectors in [µs]

Parameter

1 ≤ jump_step_size ≤ 65535 Step size of jump microvectors in [bits]

Result Function Set_Jump_Parameters_List ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Set_Jump_Parameters_List (step_period, jump_size: word);

C bool Set_Jump_Parameters_List (unsigned short step_period, unsigned
short jump_size);

Calling
conventions

Basic function Set_Jump_Parameters_List (byval step_period %, byval
jump_size) as boolean

With this command the actual jump speed of the galvanometer scanners is changed.

Note that the value for step_period is unique in the system, meaning it is the same
for all commands.

Jump speed = (jump_size / step_period) * 1000 [bits per ms]

Hints

If not set by this or any other command, default values are assumed:
jump_size = 50[bits].
See also Set_Delays.

References Set_Delays, Set_Mark_Parameters_List, Set_Jump_Speed, Set_Speed

 SP-ICE
 RLC

 SP-ICE
 RLC

List Commands Chapter 2

MN005 / v1.0.3 RAYLASE Commands and Functions 21

Set_Mark_Parameters_List

Function Sets the mark speed of the galvanometer scanners through step period and step
size.

Both parameters have to be defined as 16 bits unsigned integer.

20 ≤ step_period ≤ 65535 Step period of microvectors in [µs]

Parameter

1 ≤ step_size ≤ 65535 Step size of marking microvectors in [bits]

Result Function Set_Mark_Parameters_List ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Set_Mark_Parameters_List (step_period, step_size: word);

C bool Set_Mark_Parameters_List (unsigned short step_period, unsigned
short step_size);

Calling
conventions

Basic function Set_Jump_Parameters_List (byval step_period %, byval
step_size) as boolean

With this command the actual mark speed of the galvanometer scanners is changed.

Note that the value for step_period is unique in the system, meaning it is same for all
commands.

Mark speed = (step_size/step_period) * 1000 [bits per msec]

Hints

If not set by this or any other command, default values are assumed:
mark_size = 50[bits]
See also Set_Delays

References Set_Delays, Set_Jump_Parameters_List, Set_Speed, Set_Mark_Speed,

Set_Wobble_List

Function Defines the width and period for the wobble function.

Parameter Width and period as 16 bit unsigned integers.

Result Function Set_Wobble_List ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Set_Wobble_List (usWidth, usPeriod: word): bool;

C bool Set_Wobble_List(unsigned short usWidth, unsigned short usPeriod);

Calling
conventions

Basic function Set_Wobble_List (byval usWidth, byval usPeriod%) as boolean

While marking the beam rotates around the requested vector path by the defined
width and the period.

The function stays active until the next Set_Wobble_List is programmed either to
change the parameters or to disable the wobble function by setting the wobble width
to 0.

Hints

The wobble function depends on the mark step_size. Be sure to program first the
mark step_size and then the wobble function.

 SP-ICE
 RLC

 SP-ICE
 RLC

Chapter 2 List Commands

22 RAYLASE Commands and Functions MN005 / v1.0.3

Wait_For_Counter_Value_Ex

Function Proceeds to the next list command after a number of encoder counts.

Parameter Encoder counts as 32 bit integer.

Result Function Wait_For_Counter_Value_Ex ok (TRUE) or not ok (FALSE) as boolean

Pascal function Wait_For_Counter_Value_Ex (s: longint): bool;

C bool Wait_For_Counter_Value_Ex (long s);

Calling
conventions

Basic function Wait_For_Counter_Value_Ex (byval s&) as Boolean

To be used for triggering a mark after a number of encoder counts referenced to:
- The position of the encoder at the instant the SP-ICE card was switched on OR
- The position of the encoder at the instant of the execution of the previous
 Mark_Immediately list command OR
- The position of the encoder at the time of the previous
 Wait_For_Counter_Value_Ex list command.

If an Execute_List command occurs and the Wait_For_Counter_Value_Ex command
has a value equal or lower than the current Encoder value, then the mark will start
immediately and this will be the reference point for the next
Wait_For_Counter_Value_Ex.

If the command Wait_For_Counter_Value_Ex is encountered in a list and the mode
for Marking on the Fly has not been set, this command will act the same as
Mark_Immediately command.

Hints

The command Wait_For_Counter_Value_Ex replaces Wait_For_Counter_Value
command.

References Set_Dig_Gain_Ex

Wait_For_External_Start

Function Causes execution of a list to halt until the hardware input signal \START_MARK goes
true.

Result Function Wait_For_External_Start ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Wait_For_External_Start: bool;

C bool Wait_For_External_Start (void);

Calling
conventions

Basic function Wait_For_External_Start () as boolean

\START_MARK must be there for at least the length of step_period.

This signal is edge triggered so that \START_MARK signal must be reset and then
set again before the next start can be made.

Hints

Normally, the \START_MARK signal can be reset with the output signal \MIP
(Mark_In_Progress), creating a handshake.
Please, see the description of the command Write_Port_List.

 SP-ICE with
 MOTF-Option
 RLC

 SP-ICE
 RLC

List Commands Chapter 2

MN005 / v1.0.3 RAYLASE Commands and Functions 23

Write_DA_List

Function Outputs an 8 bit value through D/A converter to the interface signal ANA_OUT.

Parameter Output value, as a 16 bit unsigned integer, value 0 to 255.

Result Function Write_DA_List ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Write_DA_List (value: word);

C bool Write_DA_List (unsigned short value);

Calling
conventions

Basic function Write_DA_List (byval value%) as boolean

With this command normally the lamp current of YAG lasers will be set.

Output can be used as optional digital interface for setting the lamp current.
For more information contact RAYLASE.

Hints

Only the 8 least significant bits define the D/A converter output.

References Write_DA, Write_Port_List, Write_Port

 SP-ICE
 RLC

Chapter 2 List Commands

24 RAYLASE Commands and Functions MN005 / v1.0.3

Write_Port_List

Function Output to the interfaces.
Since this is a list command, it can be used for synchronisation purposes, for in-
stance, setting a hardware output between two vectors.

Output of 16 bits unsigned integer.

26H

Z-Channel

Z-DAC CANNEL1)

28H

O-Channel

P-DAC CANNEL1)

0CH

Port C

Bit 4 = \Mark In Progress2) 3) 4)
Bit 5 = \Remote_EXE_13)
Bit 7 = \Remote_EXE_23)

16 bits6)

0AH

Port B

8 bits (PB0 - PB7) 5)

Parameter

Valid port
adresses

0EH

Port D

Option7)

Result Function Write_Port_List ok (TRUE) or not ok (FALSE) as boolean

Pascal function Write_Port_List (port, value: word)

C bool Write_Port_List (unsigned short port, unsigned short value)

Calling
conventions

Basic function Write_Port_List (byval port%, byval value%) as boolean

Other port addresses than specified above will be ignored.

The value is output to the port with the next list command which requires either laser
or galvanometer scanner output. Therefore, if two or more consecutive
Write_Post_List commands are inserted in the list, only the last one will be output.

Also, note that there are no "bit setting"/"bit clearing" commands; a whole word is out-
put to port.

Hints

Output to Z-Channel will be overwritten, if 3rd axis correction is not disabled. (see
control command Set Mode).

References Write_DA_List, Write_DA, Write_Port, Read_Port, Set_Mode

 SP-ICE RLC-USB RLC-PCI
1) Scan Head Interface   
2) Restricted Laser / I/O Interface   
3) Laser / I/O Interface   
4) Extended Laser / I/O Interface   
5) Lee compatible Interface   
6) Port B   
7) Port D   

 SP-ICE
 RLC

Control Commands Chapter 3

MN005 / v1.0.3 RAYLASE Commands and Functions 25

3 CONTROL COMMANDS
The control commands described below are listed in alphabetical order.

Aut_Change

Function Activates automatic switching from one list to the other. It is thus possible for the con-
troller to work continuously, executing one list whilst the other is being filled. When the
execution of the first list is complete, execution of the second list begins with virtually
no delay.

Result Function Aut_Change ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Aut_Change: bool;

C bool Aut_Change (void);

Calling
conventions

Basic function Aut_Change () as boolean

The correct sequence of steps for continuous working are as follows:
1. Fill list 1 and close the list
2. Send Execute_List_1
3. Fill list 2 and close the list
4. Send Aut_Change
5. Read_Status and wait for list 1 not busy
6. Fill list 1 and close the list
7. Send Aut_Change
8. Read_Status and wait for list 2 not busy
9. Repeat steps 3 to 8
10. Exit the sequence if all vectors are done

This procedure assures proper order of list execution and avoids starting a list which
has not been filled or trying to fill list that is being executed.

For critical applications, it is advisable to have, as the last vector in the list, one which
switches off the laser – such as a PolC, Mark or a similar command.

Hints

The number of list starts is limited by the maximum allowed number of list starts set
by the Set_Max_Counts command. If not set, the default value is 0, which will allow
the lists to switch indefinitely.

References Read_Status, Set_Max_Counts

 SP-ICE
 RLC

Chapter 3 Control Commands

26 RAYLASE Commands and Functions MN005 / v1.0.3

Corr_File_Name

Function Reads back the correction file name that has been sent to the card.

Result Correction file name as string of characters

Pascal function Corr_File_Name: char;

C char* Corr_File_Name (void);

Calling
conventions

Basic function Corr_File_Name () as string

References Load_Corr_N

Disable_Laser

Function Disables laser output. The job will run as normal but the LM_GATE and LM signals
will stay false. This function is provided for systems using a pointer during which the
laser modulation should be inactive but deflection of mirrors should occur. Only the
laser pointer will then be visible but no marking will occur.

Result Function Disable_Laser ok (TRUE) or not ok (FALSE) as boolean

Pascal function Disable_Laser: bool;

C bool Disable_Laser (void);

Calling
conventions

Basic function Disable_Laser () as boolean

After executing the Disable_Laser command, the laser modulation can be reactivated
with Enable_Laser.

Hints

The command will not stop laser modulation immediately but rather affect the next list
or control command which starts laser modulation.

References Enable_Laser

Enable_Laser

Function Enables laser modulation during marking. That is, LM and LM_GATE will be re-
activated.

Result Function Enable_Laser ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Enable_Laser: bool;

C bool Enable_Laser (void);

Calling
conventions

Basic function Enable_Laser () as boolean

The default state is laser modulation enabled. Hints

The command will not start laser modulation immediately but rather enable laser
modulation in the next list/control command which starts laser modulation.

References Disable_Laser

 SP-ICE
 RLC

 SP-ICE
 RLC

 SP-ICE
 RLC

Control Commands Chapter 3

MN005 / v1.0.3 RAYLASE Commands and Functions 27

Execute_List_1

Function Starts output of data of list 1.

Result Function Execute_List_1 ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Execute_List_1: bool;

C bool Execute_List_1 (void);

Calling
conventions

Basic function Execute_List_1 () as boolean

Execution (Real-time output) of data from list 1 starts. It is assumed that commands
have been put into the list that it has been closed with Set_End_Of_List command.

This command will return an error if either list is currently busy.

The status of the list – i. e., whether it is busy – can be checked by polling using the
Read_Status command.

Hints

During of execution of list 1, commands can be downloaded to list 2.

References Execute_List_2, Set_End_Of_List, Read_Status, Aut_Change

Execute_List_2

Function Starts output of data of list 2.

Result Function Execute_List_2 ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Execute_List_2: bool;

C bool Execute_List_2 (void);

Calling
conventions

Basic function Execute_List_2() as boolean

Execution (Real-time output) of data from list 2 starts. It is assumed that commands
have been put into the list that it has been closed with Set_End_Of_List command.

This command will return an error if either list is currently busy.

The status of the list – i. e., whether it is busy – can be checked by polling using the
Read_Status command.

Hints

During execution of list 2, commands can be downloaded to list 1.

References Execute_List_1

 SP-ICE
 RLC

 SP-ICE
 RLC

Chapter 3 Control Commands

28 RAYLASE Commands and Functions MN005 / v1.0.3

Get_Active_Card

Function Reads the active SP-ICE card number in a master-master configuration.
Valid card numbers are starting from 1, 2, … corresponding to the order of inserting
cards in the system.

Result Returns the active SP-ICE card as an unsigned 16 bit value.

Pascal function Get_Active_Card: word;

C unsigned int Get_Active_Card (void);

Calling
conventions

Basic function Get_Active_Card ()%

References Set_Active_Card

Get_Counts

Function Reads the counter of start of lists, in automatic operation i. e. when using the
Aut_Change function or Start_Loop. It can be used for test purposes.

Result Returns the value of the counter of start of lists, as a 32 bits signed integer.

Pascal function Get_Counts: longint;

C Long Get_Counts (void);

Calling
conventions

Basic function Get_Counts ()&

Counter is reset whenever a new Start_Loop or Execute_List command is issued. Hints

The counter is incremented when a list is started and not when it finishes. Lists, which
are terminated during execution, are counted as well.

References Set_Max_Counts, Start_Loop, Quit_Loop, Aut_Change

Get_CPU_Type

Function Returns the CPU type on the SP-ICE card.

CPU type as unsigned short. Result

The following values are valid:
0 => CPU without a floating point unit
1 => CPU with floating point unit
65535 => unknown type of CPU

Pascal function Get_CPU_Type (): word;

C unsigned short Get_CPU_Type ();

Calling
conventions

Basic function Get_CPU_Type () as word

Hints Some options like 3D are recommended to be used only with CPUs with floating point
unit. This command can be used to check the suitability of the card for 3D before at-
tempting to download 3D support software.

 SP-ICE
 RLC

 SP-ICE
 RLC

 SP-ICE
 RLC

Control Commands Chapter 3

MN005 / v1.0.3 RAYLASE Commands and Functions 29

Get_DLL_Version
Supported for legacy applications only

Function Reads back the version number of the DLL Program Library running under Windows

Result DLL-versions number, as 16 bits unsigned integer

Pascal function Get_DLL_Version: word;

C unsigned short Get_DLL_Version (void);

Calling
conventions

Basic function Get_DLL_Version ()%

Hints New applications should use Get_Library_Version

References Get_SPC1_Version, Get_Version, Get_SPC1_Mode

Get_Device_Description_String

Function Returns a pointer to the descriptor provided by the RLC device.

Result Pointer as 32 bit integer

Pascal function Get_Device_Description_String: int;

C int Get_ Device_Description_String;

Calling
conventions

Basic function Get_ Device_Description_String () int

This allows the application to differentiate between RLC-USB and RLC-PCI.

“RLC-USB Device" Valid strings:

"RLC-PCI Device"

Hints

Hint for Basic users: Get_Device_Description_String returns the address of the string,
which must be retrieved using: Private Declare Sub CopyMemory Lib "kernel32" Alias
"RtlMoveMemory" (pdst As Any, pSrc As Any, ByVal nBytes As Long)

References Get_Driver_Version, Get_Hardware_Version, Get_Firmware_Version

Get_Driver_Version

Function Reads back the version number of the hardware driver.

Result Version number as 32 bit integer

Pascal function Get_Driver_Version: int;

C int Get_Driver_Version;

Calling
conventions

Basic function Get_Driver_Version () int

Hints The value can be easily converted for display in the standard version number format
(mm.nn.rr.bb).

References Get_Device_Description_String, Get_Hardware_Version, Get_Firmware_Version

 SP-ICE
 RLC

 SP-ICE
 RLC

 SP-ICE
 RLC

Chapter 3 Control Commands

30 RAYLASE Commands and Functions MN005 / v1.0.3

Get_Firmware_Version

Function Reads back the version number of the firmware.

Result Version number as 32 bit integer.

Pascal function Get_Firmware_Version: int;

C int Get_ Firmware _Version;

Calling
conventions

Basic function Get_ Firmware _Version () int

Hints The value can be easily converted for display in the standard version number format
(mm.nn.rr.bb).

References Get_Device_Description_String, Get_Hardware_Version, Get_Driver_Version

Get_Hardware_Version

Function Reads back the version number of the card.

Result Version number as 32 bit integer.

Pascal function Get_Hardware_Version: int;

C int Get_ Hardware _Version;

Calling
conventions

Basic function Get_ Hardware _Version () int

Hints The value can be easily converted for display in the standard version number format
(mm.nn.rr.bb).

References Get_Device_Description_String, Get_Driver_Version, Get_Firmware_Version

Get_Ident_Ex

Function Returns the SP-ICE card serial number.

Result The SP-ICE card serial number as 16 bit integer.

Pascal function Get_Ident_Ex (): word;

C unsigned short Get_Ident_Ex ();

Calling
conventions

Basic function Get_Ident_Ex () as word

 SP-ICE
 RLC

 SP-ICE
 RLC

 SP-ICE
 RLC

Control Commands Chapter 3

MN005 / v1.0.3 RAYLASE Commands and Functions 31

Get_Jump_Speed

Function Reads back jump speed.

Result Jump speed as 64 bit IEEE-floating double.

Pascal function Get_Jump_Speed: double;

C double Get_Jump_Speed;

Calling
conventions

Basic function Get_Jump_Speed () as double

Parameter jump_speed can be set with control commands Set_Speed,
Set_Jump_Speed, or Set_Jump_Parameters_List.

Hints

Jump speed = (jump_step_size / step_period) * 1000 [bits per msec]

References Get_Mark_Speed, Set_Speed, Set_Jump_Speed, Set_Mark_Speed,
Set_Jump_Parameters_List, Set_Mark_Parameters_List

Get_Library_Version

Function Reads back the version number of the dynamic link library.

Result Version number as 32 bit integer.

Pascal function Get_Library_Version: int;

C int Get_Library_Version;

Calling
conventions

Basic function Get_Library_Version () as integer

Hints The value can be easily converted for display in the standard version number format
(mm.nn.rr.bb).

Get_Mark_Speed

Function Reads back marking speed.

Result Mark speed as 64 bit IEEE-floating double.

Pascal function Get_Mark_Speed: double;

C double Get_Mark_Speed;

Calling
conventions

Basic function Get_Mark_Speed () as double

Mark speed = (step_size / step_period) * 1000 [bits per msec] Hints

Parameter mark_speed can be set with control commands Set_Speed,
Set_Mark_Speed, or Set_Mark_Parameters_List. Also some commands (Set_Delays,
Set_Mark_Parameters_List) that change the step period and step size affect the re-
sulting mark speed. Check each of these commands for precise explanation.

References Set_Mark_Speed, Set_Speed, Set_Jump_Speed, Get_Jump_Speed,
Set_Jump_Parameters_List, Set_Mark_Parameters_List, Set_Delays,
Set_Mark_Parameters_List, Set_Jump_Parameters_List

 SP-ICE
 RLC

 SP-ICE
 RLC

 SP-ICE
 RLC

Chapter 3 Control Commands

32 RAYLASE Commands and Functions MN005 / v1.0.3

Get_Mode_Mask

Function Returns the system mode mask.

Pointer to a 16 bit unsigned short system mask. Parameters

The meaning of each bit in the mask is as follows:
D0 – SWAP_XY – swapping X and Y coordinates
D1 – MASTER_SLAVE mode
D2 – INVERT_X – inverting X coordinate
D3 – INVERT_Y  inverting Y coordinate
D4 – CO2 type of lasers
D5 – YAG type of lasers
D6 – WELDING mode
D7 – SKIP_CORRECTION – overriding correction calculation
D8 – DIRECT_Z – allows direct access to Z-Axis
D9 – POWER_CONTROL mode
D10 – LM_GATED
D11 – LM_GATE_SENSE
D12 – MOTF mode
D13 – 3D mode
D14 – not used
D15 – not used

Result An error code as 32 bit integer. The value result = 0 means no error.

Pascal function Get_Library_Version(var mode: smallint): int;

C int Get_Mode_Mask (signed short *mode);

Calling
conventions

Basic Function Get_Mode_Mask (ByRef mode As Integer) As Long

The mode mask indicates the setting of specific options and modes. If a bit is set the
mode is enabled and if not set then it is disabled.

These modes are always available on the card: INVERT_Y, INVERT_X, SWAP_XY,
SKIP_CORRECTION, YAG, CO2, LMGATE_SENSE, LM_GATED and
POWER_CONTROL.

These modes have to be enabled on the card: MASTER_SLAVE, WELDING, MOTF
and 3D. Contact RAYLASE for further details.

Hints

Read the explanation for Set_Mode command for further details on each mode.

References Set_Mode

Get_SPC1_Version

Function Reads back the version number of the FPGA on the SP-ICE Card.

Result FPGA version as 16 bits unsigned integer.

Pascal function Get_SPC1_Version: word;

C unsigned short Get_SPC1_Version (void);

Calling
conventions

Basic function Get_SPC1_Version ()%

References Get_Version, Get_DLL_Version

 SP-ICE
 RLC

 SP-ICE
 RLC

Control Commands Chapter 3

MN005 / v1.0.3 RAYLASE Commands and Functions 33

Get_System_Status

Function Returns the system status.

System status as unsigned short. Result

The following values are valid:
D0 DLL_TYPE 0 - SPC, 1 - SPI-CE
D1 - D3 non zero-based index of the active card
D4 SSF_ADDR not used
D5 SSF_INTR not used
D6 - D8 active serial port number of the SP-ICE card
D9 SSF_PAR 1 - Indicates that the parallel port is used

 0 - Indicates that the parallel port is not used

Pascal Get_System_Status (): word;

C unsigned short Get_System_Status ();

Calling
conventions

Basic function Get_System_Status () as word

Get_Version

Function Reads back the version number of the SPICE.RTB software.

Result SP-ICE card software version number, as 16 bits unsigned integer.

Pascal function Get_Version: word;

C unsigned short Get_Version (void);

Calling
conventions

Basic function Get_Version ()%

References Get_SPC1_Version, Get_DLL_Version

Get_XY_Pos

Function Reads back the last commanded beam position for the currently active head.

Parameters Last commanded beam coordinates as 16 bits signed integer.

Result Function Get_XY_Pos ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Get_XY_Pos (var xpos, ypos: smallint): bool;

C bool Get_XY_Pos (signed short *xpos, signed short *ypos);

Calling
conventions

Basic function Get_XY_Pos (xpos%, ypos%) as boolean

Hint Note that this command returns the commanded target positions. There is no feed-
back from the hardware.

 SP-ICE
 RLC

 SP-ICE
 RLC

 SP-ICE
 RLC

Chapter 3 Control Commands

34 RAYLASE Commands and Functions MN005 / v1.0.3

Init_Scan_Card

Function Initialize the card bringing it into an initial state.

Parameters Card number, as 16 bit unsigned integer.
Only value 1 is supported for the RLC unit.

Result TRUE on success, otherwise FALSE.

Pascal function Init_Scan_Card: bool;

C bool Init_Scan_Card_Ex(unsigned short N);

Calling
conventions

Basic function Init_Scan_Card_Ex(N%) as boolean

This command is supported for backwards-compatibility with existing applications
only. New applications should use Init_Scan_Card_Ex

This command should be called first in an application program.

Hints

If called any time later on, it stops execution of lists, turns off laser, discards list com-
mands sent to card and the correction files.

References Init_Scan_Card_Ex, Remove_Scan_Card

Init_Scan_Card_Ex

Function Initialize the card bringing it into an initial state.

Parameters Card number, as 16 bit unsigned integer.
Only value 1 is supported for the RLC unit.

Result ERR_OK (0) on success, otherwise a non-zero ERROR_CODE.

Pascal function Init_Scan_Card_Ex: integer;

C int Init_Scan_Card_Ex(unsigned short N);

Calling
conventions

Basic function Init_Scan_Card_Ex(N%) as long

This command should be called first in an application program. Hints

If called any time later on, it stops execution of lists, turns off laser, discards list com-
mands sent to card and the correction files.

References Remove_Scan_Card_Ex

 SP-ICE
 RLC

 SP-ICE
 RLC

Control Commands Chapter 3

MN005 / v1.0.3 RAYLASE Commands and Functions 35

Load_Cor

Function Loads a correction file for the default scan head, to suit the optical characteristics of
the deflection system and lens.

Parameters Pointer to the name of the correction file.

Result Function Load_Cor ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Load_Corr_N (var lpstrFileName: pchar): bool;

C bool Load_Corr_N (const char* lpstrFileName);

Calling
conventions

Basic function Load_Corr_N (lpstrFileName$) as boolean

Correction file should be loaded after Init_Scan_Card command. If no file is loaded,
default (zero) values are used.

Hints

New correction file replaces the previous one.
Small changes in the positioning can be done with Set_Gain and Set_Offset.

References Load_Corr_N, Init_Scan_Card, Corr_File_Name, Set_Gain, Set_Offset

Load_Corr_N

Function Loads a correction file for the specified scan head, to suit for optical characteristics of
the deflection system and lens.

Parameters Pointer to the name of the correction file and the number of the scan head.

Result Function Load_Cor ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Load_Corr_N (var lpstrFileName: pchar, N: word): bool;

C bool Load_Corr_N (const char* lpstrFileName, int N);

Calling
conventions

Basic function Load_Corr_N (lpstrFileName$, byval N%) as boolean

Correction files should be loaded after Init_Scan_Card command. If no files are
loaded, default (zero) values are used.

Hints

New correction file replace the previous one.

References Load_Cor, Init_Scan_Card, Corr_File_Name, Set_Gain, Set_Offset

 SP-ICE
 RLC

 SP-ICE
 RLC

Chapter 3 Control Commands

36 RAYLASE Commands and Functions MN005 / v1.0.3

Quit_Loop

Function At the end of the active list, quits the continuous output of lists, started with the
Start_Loop Command.

Result Function Quit_Loop ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Quit_Loop: bool;

C bool Quit_Loop (void);

Calling
conventions

Basic function Quit_Loop () as boolean;

Execution of the active list is continued until the last command in the list is executed. Hints

Quit_Loop command does not affect contents of the lists. After a Quit_Loop com-
mand, a new Start_Loop command can be issued; execution will proceed with list 1.

References Start_Loop

Read_Port

Function Reads values from the interfaces.

Read in a 16 bits unsigned integer from the port.

0CH

Port C

Bit 0 = \START_MARK1) 2) 3)
Bit 1 = \general Purpose Input
Bit 2 = \general Purpose Input
Bit 3 = \STOP_MARK1) 2) 3)

8 bits buffered, 16 bits unbuffered5)

08H

Port A

7 bits (PA0 – PA6)4)

10H

Port E

used for MOTF-Option 6)

2EH

Status Channel 1

Parameter

Valid port
adresses

32H

Status Channel 2

Result Function Read_Port ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Read_Port (port: word, var value: word): bool;

C Bool Read_Port (unsigned short port, unsigned short *pvalue);

Calling
conventions

Basic function Read_Port (byval port%, value%) as boolean

Hints Other port addresses than specified above will be ignored.

References Write_Port_List, Write_Port

 SP-ICE RLC-USB RLC-PCI
1) Restricted Laser / I/O Interface   
2) Laser / I/O Interface   
3) Extended Laser / I/O Interface   
4) Lee compatible Interface   
5) Port A   
6) Port E   

 SP-ICE
 RLC

 SP-ICE
 RLC

Control Commands Chapter 3

MN005 / v1.0.3 RAYLASE Commands and Functions 37

Read_Status

Function Reads back the card status.

Result 16 bits unsigned integer.
Bit 0 Load1 Indicates that list 1 is open for data input and all following list
 commands will be stored in it
 Is set with Set_Start_List_1 and reset with Set_End_Of_List.
Bit 1 Load2 Indicates that list 2 is open for data input and all following list
 commands will be stored in it.
 Is set with Set_Start_List_2 and reset with Set_End_Of_List.
Bit 2 Ready1 Indicates that list 1 has been filled and closed. It is set with
 Set_End_Of_List.
Bit 3 Ready2 Indicates that list 2 has been filled and closed. It is set with
 Set_End_Of_List.
Bit 4 Busy1 Indicates that list 1 is being executed.
Bit 5 Busy2 Indicates that list 2 is being executed.
Bit 6 Busy Indicates that one of the lists is being executed.
Bit 7 LaserOn Indicates that laser is on.
Bit 8 Scan Complete Indicates that scanning was finished either regularly at the end
 of the list or interrupted during execution.
Bit 9 Previously used for indication that manual operation is
 switched on.
Bit 10 Previously used for manual movement indicating that scan-
 ners are moved with control command.
Bit 11 Marking Busy Indicates that marking is not yet finished – this occurs when
 there are still commands in the output buffer to be processed
 even though all list commands have been interpreted.
Bit 12 not used
Bit 13 not used
Bit 15 STOP Marking The hardware signal STOP_MARK was received (through port
C). Laser will be switched off list execution stopped.
 Clear this bit with Stop_Execution

Pascal function Read_Status: word;

C unsigned short Read_Status (void);

Calling
conventions

Basic function Read_Status ()%

References Execute_List_n, Set_End_Of_List, Stop_Execution

 SP-ICE
 RLC

Chapter 3 Control Commands

38 RAYLASE Commands and Functions MN005 / v1.0.3

 Remove_Scan_Card

Function Shuts down the card.

Parameters Card number, as 16 bit unsigned integer.
Only value 1 is supported for the RLC card.

Result TRUE on success, otherwise FALSE.

Pascal function Remove_Scan_Card: bool;

C bool Remove_Scan_Card (void);

Calling
conventions

Basic function Remove_Scan_Card () as Boolean

This command is supported for backwards-compatibility with existing applications
only. New applications should use Remove_Scan_Card_Ex.

This command should be called before closing application program.

It also causes a Stop_Execution command, which stops execution of list commands
and resets command lists. All serial and parallel ports are cleared.

Hints

Use Init_Scan_Card to reconnect to the card.

References Init_Scan_Card, Remove_Scan_Card_Ex

Remove_Scan_Card_Ex

Function Shuts down the card.

Parameters Card number, as 16 bit unsigned integer.
Only value 1 is supported for the RLC card.

Result ERR_OK (0) on success, otherwise a non-zero ERROR_CODE.

Pascal function Remove_Scan_Card: integer;

C int Remove_Scan_Card (void);

Calling
conventions

Basic function Remove_Scan_Card () as long

Command Remove_Scan_Card should be called before closing application program.

It also causes a Stop_Execution command, which stops execution of list commands
and resets command lists. All serial and parallel ports are cleared.

Hints

Use Init_Scan_Card_Ex to reconnect to the card.

References Init_Scan_Card_Ex

 SP-ICE
 RLC

 SP-ICE
 RLC

Control Commands Chapter 3

MN005 / v1.0.3 RAYLASE Commands and Functions 39

Restart_List_1

Function Starts execution of list1.

Result Function Restart_List_1 ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Restart_List_1: bool;

C bool Restart_List_1 (void);

Calling
conventions

Basic function Restart_List_1 () as boolean

Counter for start of lists is reset to 0. Hints

This command is identical to Execute_List_1 command.

References Restart_List_2, Execute_List_1, Execute_List_2

Restart_List_2

Function Starts execution of list2.

Result Function Restart_List_2 ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Restart_List_2: bool;

C bool Restart_List_2 (void);

Calling
conventions

Basic function Restart_List_2 () as boolean

Counter for start of lists is reset to 0. Hints

This command is identical to Execute_List_2 command.

References Restart_List_1, Execute_List_1, Execute_List_2

Set_Active_Card

Function Defines the active card.

Parameters Card number, as 16 bits unsigned integer.
Only value 1 is supported for the RLC card.

Result Function Set_Active_Card ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Set_Active_Card (base: word): bool;

C bool Set_Active_Card (unsigned short base);

Calling
conventions

Basic function Set_Active_Card (byval base%) as boolean

Hints The system checks if the card is installed and if ok sets it as the active card in a mas-
ter-master application. All the following control or list commands will be sent to the
specified card.

References Get_Active_Card

 SP-ICE
 RLC

 SP-ICE
 RLC

 SP-ICE
 RLC

Chapter 3 Control Commands

40 RAYLASE Commands and Functions MN005 / v1.0.3

Set_Auto_Delay

Function Sets step period of microvectors for marking and jump commands.

Parameters Step period in [ìs], as 16 bits unsigned integer.
For valid value range of step period, see Set_Delays list command.

Result Function Set_Auto_Delay ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Set_Auto_Delay (usStepPeriod: word): bool;

C bool Set_Auto_Delay (unsigned short usStepPeriod);

Calling
conventions

Basic function Set_Auto_Delay (byval usStepPeriod%) as boolean;

For the specified step_period in the command and the current mark_speed and
jump_speed values, the system calculates mark step_size and jump_step_size. If the
re-calculated values are out of the valid range (see Set_Delays list command), the
command returns a false flag and retains the previous value for step_period.

Parameter step_period can also be set with Set_Delays list command during list exe-
cution.

Hints

The same value for step_period is used in Set_Mark_Parameters_List,
Set_Jump_Parameters_List and Set_Delays commands.

References Set_Jump_Delay, Set_Mark_Delay, Set_Poly_Delay, Set_Laser_Off_Delay,
Set_Laser_On_Delay, Set_T1, Set_T2, Set_T3, Set_Delays

Set_Dig_Gain_Ex

Function Sets resolution of encoder in counts.

Parameters Encoder resolution as a 64 bit IEEE- floating double.

Result Function Set_Dig_Gain_Ex ok (TRUE) or not ok (FALSE) as boolean

Pascal function Set_Dig_Gain_Ex (DigGain double): bool;

C bool Set_Dig_Gain_Ex (double DigGain);

Calling
conventions

Basic function Set_Dig_Gain_Ex (byval DigGain#) as Boolean

Set_Dig_Gain_Ex has to be implemented for the Mark-on-the-Fly application.
If not set a default value of 1count/bit is used.

Set_Dig_Gain_Ex replaces Set_Dig_Gain which used to have a resolution of counts
per 100bits and accept an integer value.

Hints

This command resets the current value for the number of encoder counts.

References Set_Rot_Grad

 SP-ICE
 RLC

 SP-ICE with
 MOTF-Option
 RLC

Control Commands Chapter 3

MN005 / v1.0.3 RAYLASE Commands and Functions 41

Set_Gain

Function Defines the gain and offset for X and Y.

Gain values for X und Y axis, in the range (0.01-100), as 64 bits IEEE-floating double. Parameters

Offset values for X and Y axis, with no range limit, as 16 bits signed integer.

Result Function Set_Gain ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Set_Gain (gain_x, gain_y: double; offset_x, offset_y: smallint):
bool;

C bool Set_Gain (double gain_x, double gain_y, short offset_x, short off-
set_y);

Calling
conventions

Basic function Set_Gain (byval gainx#, byval gainy#, byval offset_x%, byval off-
set_y%) as boolean

The gain factors allow small corrections to be made to the calibration; i. e. if a square
is marked as a rectangle it can be corrected with the gain factors.

Hints

Gain and offset values are used to modify all X and Y coordinates in list commands,
according to the following:
actual_coordinate = programmed_coordinate * gain + offset
It is programmer‘s responsibility, to assure that new coordinates are still within the
valid field. No checking or error reporting is done by the system. Instead, maximum
allowed values will be issued during execution if the coordinates lie outside the valid
field.

References Set_Gain_X, Set_Gain_Y, Set_Offset_X, Set_Offset_Y

 SP-ICE
 RLC

Chapter 3 Control Commands

42 RAYLASE Commands and Functions MN005 / v1.0.3

Set_Gain_X

Function Defines the gain factor for X axis.

Parameters Gain value for X axis, in the range (0.01-100), as 64 bits IEEE-floating double.

Result Function Set_Gain_X ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Set_Gain_X (gain_x: double): bool

C bool Set_Gain_X (double gain_x);

Calling
conventions

Basic function Set_Gain_X (byval gainx#) as boolean

Hints See the hints section for Set_Gain command

References Set_Gain, Set_Gain_Y, Set_Offset_X, Set_Offset_Y

Set_Gain_Y

Function Defines the gain factor for Y axis.

Parameters Gain value for Y axis, in the range (0.01-100), as 64 bits IEEE-floating double.

Result Function Set_Gain_Y ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Set_Gain_Y (gain_y: double): bool;

C bool Set_Gain_Y (double gain_y);

Calling
conventions

Basic function Set_Gain_Y (byval gainy#) as boolean

Hints See the hints section for Set_Gain command

References Set_Gain, Set_Gain_X, Set_Offset_X, Set_Offset_Y

 SP-ICE
 RLC

 SP-ICE
 RLC

Control Commands Chapter 3

MN005 / v1.0.3 RAYLASE Commands and Functions 43

Set_Jump_Delay

Function Sets jump delay.

Parameters Jump delay in the range 20-65535 [ìs], as 16 bits unsigned integer.

Result Function Set_Jump_Delay ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Set_Jump_Delay (usJumpDelay: word): bool;

C bool Set_Jump_Delay (unsigned short usJumpDelay);

Calling
conventions

Basic function Set_Jump_Delay (byval usJumpDelay%) as boolean

Parameter jump delay (jump_del) can also be set with Set_Delays list command dur-
ing list execution.

Hints

If not set by any command, default value of 200ìs is assumed.

References Set_Auto_Delay, Set_Mark_Delay, Set_Poly_Delay, Set_Laser_Off_Delay,
Set_Laser_On_Delay, Set_T1, Set_T2, Set_T3, Set_Delays

Set_Jump_Speed

Function Sets jump speed and the corresponding jump size.

Parameters Jump speed as 64 bit IEEE-floating double in [bits/ms].

Result Function Set_Jump_Speed ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Set_Jump_Speed (dJumpSpeed: double): bool;

C bool Set_Jump_Speed (double dJumpSpeed);

Calling
conventions

Basic function Set_Jump_Speed (byval dJumpSpeed#) as boolean

Parameter jump_speed can also be set with Set_Speed control command or
Set_Jump_Parameters_List list command.

Hints

jump_step_size = (step_period [ìs] * jump_speed [bits/ms]) / 1000

If the value for jump_step_size is out of valid range (see Set_Jump_Parameters_List
list command), old value for jump_step_size and jump_speed are kept and an error
flag (ERR_OUT_OF_LIMIT) is set.

References Set_Speed, Set_Mark_Speed, Set_Jump_Parameters_List,
Set_Mark_Parameters_List

 SP-ICE
 RLC

 SP-ICE
 RLC

Chapter 3 Control Commands

44 RAYLASE Commands and Functions MN005 / v1.0.3

Set_Laser_Off_Delay

Function Sets laser off time delay.

Parameters Laser off time delay in the range (20-65535)[ìs], as 16 bits unsigned integer.

Result Function Set_Laser_Off_Delay ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Set_Laser_Off_Delay (usLaserOffDelay: word): bool;

C bool Set_Laser_Off_Delay (unsigned short usLaserOffDelay);

Calling
conventions

Basic function Set_Laser_Off_Delay (byval usLaserOffDelay%) as boolean

Hints Parameter laser off delay can be set with list command Set_Delays during execution
of list.

References Set_Auto_Delay, Set_Jump_Delay, Set_Poly_Delay, Set_Laser_On_Delay,
Set_Mark_Delay, Set_T1, Set_T2, Set_T3, Set_Delays

Set_Laser_On_Delay

Function Sets laser on time delay.

Parameters Laser on time delay in the range (20 - 65535)[ìs], as 16 bits, unsigned integer.

Result Function Set_Laser_On_Delay ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Set_Laser_On_Delay (usLaserOnDelay: word): bool;

C bool Set_Laser_On_Delay (unsigned short usLaserOnDelay);

Calling
conventions

Basic function Set_Laser_On_Delay (byval usLaserOnDelay%) as boolean

Hints Parameter laser on delay can be set with list command Set_Delays during execution
of list.

References Set_Auto_Delay, Set_Jump_Delay, Set_Poly_Delay, Set_Laser_Off_Delay,
Set_Mark_Delay, Set_T1, Set_T2, Set_T3, Set_Delays

Set_Mark_Delay

Function Sets mark delay.

Parameters Mark delay in the range 20 - 65535 [ìs], as 16 bits unsigned integer.

Result Function Set_Mark_Delay ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Set_Mark_Delay (usMarkDelay: word): bool;

C bool Set_Mark_Delay (unsigned short usMarkDelay);

Calling
conventions

Basic function Set_Mark_Delay (byval usMarkDelay%) as boolean

Parameter mark delay (mark_del) can be set with list command Set_Delays during
execution of list.

Hints

If not set by any command, default value of 100ìs is assumed.

References Set_Auto_Delay, Set_Jump_Delay, Set_Poly_Delay, Set_Laser_Off_Delay,
Set_Laser_On_Delay, Set_T1, Set_T2, Set_T3, Set_Delays

 SP-ICE
 RLC

 SP-ICE
 RLC

 SP-ICE
 RLC

Control Commands Chapter 3

MN005 / v1.0.3 RAYLASE Commands and Functions 45

Set_Mark_Speed

Function Sets mark speed and the corresponding mark step size.

Parameters Mark speed as 64 bit IEEE-floating double in [bits/ms].

Result Function Set_Jump_Speed ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Set_Mark_Speed (dMarkSpeed: double): bool;

C bool Set_Mark_Speed (double dMarkSpeed);

Calling
conventions

Basic function Set_Mark_Speed (byval dMarkSpeed#) as boolean

Mark step_size = (step_period [ìs] * mark_speed [bits/ms]) / 1000

If the value for mark step_size is out of valid range (refer to Set_Delays list com-
mand), previous values for mark step_size and mark_speed are kept and an error flag
(ERR_OUT_OF_LIMIT) is set.

Hints

Parameter mark speed can also be set with control command Set_Speed or list com-
mand Set_Mark_Parameters_List. Use Set_Mark_Parameters_List for direct control
from the application of the parameters.

References Set_Speed, Set_Jump_Speed, Set_Jump_Parameters_List,
Set_Mark_Parameters_List

Set_Max_Counts

Function Defines the maximum number of list starts in a loop.

Parameters Maximum number of starts of list, as 32 bits signed integer.
0 ≤ counts ≤ 2 147 483 647

Result Function Set_Max_Counts ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Set_Max_Counts (counts: longint): bool;

C bool Set_Max_Counts (long counts);

Calling
conventions

Basic function Set_Max_Counts (byval counts&) as boolean

If max_counts is set to 0 or > 1.000.000, the number of starts is not limited and the
loop runs indefinitely.

After reaching the maximum number of external starts, next list in a loop is not exe-
cuted.
The loop can be reinitiated with another Start_Loop command. The value for
max_counts is withheld and does not have to be set again before Start_Loop.

Hints

If not set with this command, a default value max_counts = 0 is assumed.

References Get_Counts, Start_Loop, Quit_Loop, Aut_Change, Loop_To_Start_List

 SP-ICE
 RLC

 SP-ICE
 RLC

Chapter 3 Control Commands

46 RAYLASE Commands and Functions MN005 / v1.0.3

Set_Mode

Function Defines the scanner mode.

Mode as an unsigned 16 bit value. Parameters

The following modes are active if the corresponding bit is set to 1:
Bit 0: Swap XY

X and Y axis are swapped. Swapping is done first and then inverting of
X or Y if the corresponding flag is set. This mode setting can be used
with bit 2 and 3 to do rotation and mirroring in 8 possible cases.

Bit 1: ---
Bit 2: Invert X

Inversion is done after swapping XY, if required.
Bit 3: Invert Y

Inversion is done after swapping XY, if required.
Bits 4, 5: 0 CO2-Mode.

00 YAG-Mode-2
01 YAG-Mode-1
11 Diode-Laser-Mode

Bit 6: ---
Bit 7: Skip correction

No correction will be made by the field correction algorithm.
Bit 8: Disable 3rd axis correction

Allows Write_Port and Write_Port_List commands to use the Z-axis in-
dependently, without being overwritten by the correction output.

Bit 9: ---
Bit 10: LM signal
 Always set to 1.

If set to 0: Last pulse of LM signal will be continuing after laser off de-
lay.
If set to 1: Last pulse of LM signal will be switched off exactly at laser
off.

Bit 11: LM_GATE active LOW/HIGH
If set to 0 (default mode): LM_GATE signal is LOW_ACTIVE
If set to 1: LM_GATE signal is HIGH_ACTIVE

Bit 12: ---
Bit 13: 3D set mode
Bit 14 - 15: Reserved

Result Function Set_Mode ok (TRUE) or not ok (FALSE) as boolean.

Pascal function procedure Set_Mode (mode: word): bool;

C bool Set_Mode (unsigned short mode);

Calling
conventions

Basic function Set_Mode (byval mode%) as boolean

Hints If bits D1, D6, D12 or D13 are set, modes are allowed only if corresponding hardware
keys have been set.

References Get_SPC1_Mode, Write_Port, Write_Port_List, Get_Mode_Mask

 SP-ICE
 RLC

Control Commands Chapter 3

MN005 / v1.0.3 RAYLASE Commands and Functions 47

Set_Offset_X

Function Defines the offset for X axis.

Parameters Offset value for X axis as 16 bits signed integer.

Result Function Set_Offset_X ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Set_Offset_X (ssoffset_x): bool;

C bool Set_Offset_X (short ssoffset_x);

Calling
conventions

Basic function Set_Offset_X (byval ssoffset_x%) as boolean

The offset factor for X axis is dedicated to make small adoption of the calibration. The
specified value for offset is added to programmed X position.

If the calculated value for X is not inside the allowed range, maximum possible value
is output.

Hints

If not programmed, a default value of offset_X = 0 is used.

References Set_Gain, Set_Gain_X, Set_Gain_Y, Set_Offset_Y

Set_Offset_Y

Function Defines the offset for Y axis.

Parameters Offset value for Y axis as 16 bits signed integer.

Result Function Set_Offset_Y ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Set_Offset_Y (ssoffset_y): bool;

C bool Set_Offset_Y (short ssoffset_y);

Calling
conventions

Basic function Set_Offset_Y (byval ssoffset_y%) as boolean

The offset factor for Y axis is dedicated to make small adoption of the calibration. The
specified value for offset is added to programmed Y position.

If the calculated value for Y is not inside the allowed range, maximum possible value
is output.

Hints

If not programmed, a default value of offset_Y = 0 is used.

References Set_Gain, Set_Gain_X, Set_Gain_Y, Set_Offset_X

 SP-ICE
 RLC

 SP-ICE
 RLC

Chapter 3 Control Commands

48 RAYLASE Commands and Functions MN005 / v1.0.3

Set_Poly_Delay

Function Sets polygon delay.

Parameters Poly delay in the range 0 - 65535 [ìs], as 16 bits unsigned integer.

Result Function Set_Poly_Delay ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Set_Poly_Delay (usPolyDelay: word): bool;

C bool Set_Poly_Delay (unsigned short usPolyDelay);

Calling
conventions

Basic function Set_Poly_Delay (byval usPolyDelay%) as boolean

Parameter polygon delay (poly_del) can be set with Set_Delays list command during
list execution.

Hints

If not set by any command, default value of 50ìs is assumed.

References Set_Auto_Delay, Set_Jump_Delay, Set_Mark_Delay, Set_Laser_Off_Delay,
Set_Laser_On_Delay, Set_T1, Set_T2, Set_T3, Set_Delays

Set_Rot_Grad

Function Defines orientation of the moving part relative to the scan head.

Parameters Orientation of the moving part in radians (radians =  / 180° * ð).
Value has to be 64 bit IEEE- floating double, - 2ð ≤ Deg ≤ 2ð.

Result Function Set_Rot_Grad ok (TRUE) or not ok (FALSE) as boolean

Pascal function Set_Rot_Grad (DigGain double): bool;

C bool Set_Rot_Grad (double DigGain);

Calling
conventions

Basic function Set_Rot_Grad (byval DigGain#) as Boolean

- Web is moving along X-axis of scan head, count is increasing: Deg = 0
- Web is moving along Y-axis of scan head, count is increasing: Deg = ð/2
- Web is moving along X-axis of scan head, count is decreasing: Deg = +/-ð
- Web is moving along Y-axis of scan head, count is decreasing: Deg = -ð/2
This command resets the current value for the number of encoder counts.
The default value for Set_Rot_Grad is 0°.

Hints

This command resets the current value for the number of encoder counts.

References Set_Dig_Gain_Ex

 SP-ICE
 RLC

 SP-ICE with
 MOTF-Option
 RLC

Control Commands Chapter 3

MN005 / v1.0.3 RAYLASE Commands and Functions 49

Set_Speed

Function Defines jump and marking speed.

Parameters Jump speed and marking speed in [bits/ms].
Values have to be 64 bit IEEE-floating double.

Result Function Set_Speed ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Set_Speed (jump_speed, mark_speed: double): bool;

C bool Set_Speed (double jump_speed, double mark_speed);

Calling
conventions

Basic function Set_Speed (byval jump_speed#, byval mark_speed#) as boolean

This command sets jump and mark speed in one command, just like
Set_Mark_Speed and Set_Jump_Speed control commands do.

See the hints section for Set_Mark_Speed commands for important information about
this and Set_Jump_Speed command.

Hints

Both speeds should be higher than 100 [bits/ms].

References Set_Jump_Speed, Set_Mark_Speed, Set_Jump_Parameters_List,
Set_Mark_Parameters_List.

Set_Start_List_1

Function Selects list 1 as the active list for download. All following list commands will be di-
rected to list 1.

Result Function Set_Start_List_1 ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Set_Start_List_1: bool;

C bool Set_Start_List_1 (void);

Calling
conventions

Basic function Set_Start_List_1 () as boolean

List 1 is selected as active only if it is not being executed at the same time, if it is, an
ERR_SCAN_ACTIVE error is set and the command neglected.

Setting a list to be active for download deletes any prior list commands sent to it and
resets the Set_End_Of_List flag if it was previously set.

Hints

If list 2 is being executed, list commands can still be downloaded to list 1.

References Set_Start_List_2

 SP-ICE
 RLC

 SP-ICE
 RLC

Chapter 3 Control Commands

50 RAYLASE Commands and Functions MN005 / v1.0.3

Set_Start_List_2

Function Selects list 2 as the active list for download. All following list commands will be di-
rected to list 2.

Result Function Set_Start_List_2 ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Set_Start_List_2: bool;

C bool Set_Start_List_2 (void);

Calling
conventions

Basic function Set_Start_List_2 () as boolean

List 2 is selected as active only if it is not being executed at the same time, otherwise
an ERR_SCAN_ACTIVE error is set and the command neglected.

Setting a list to be active for download deletes any prior list commands sent to it and
resets the Set_End_Of_List flag if previously set.

Hints

If list 1 is being executed, list commands can still be downloaded to list 2.

References Set_Start_List_1

Set_T1

Function Sets Q-switch cycle time (Nd:YAG) or output period of laser pulses (CO2).

Parameters Time as 16 bits, unsigned integer.

Result Function Set_T1 ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Set_T1 (usT1: word): bool;

C bool Set_T1 (unsigned short usT1);

Calling
conventions

Basic function Set_T1 (byval usT1%) as boolean

T1 can be set with list command Set_Delays during execution of list. Hints

See the hints section for the Set_Delays command for important information on valid
value range and default value.

References Set_Auto_Delay, Set_Jump_Delay, Set_Mark_Delay, Set_Poly_Delay,
Set_Laser_Off_Delay, Set_Laser_On_Delay, Set_T2, Set_T3, Set_Delays

 SP-ICE
 RLC

 SP-ICE
 RLC

Control Commands Chapter 3

MN005 / v1.0.3 RAYLASE Commands and Functions 51

Set_T2

Function Sets Q-switch pulse width (Nd:YAG) or laser pulse width (CO2).

Parameters Pulse width as 16 bits unsigned integer.

Result Function Set_T2 ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Set_T2 (usT2: word): bool;

C bool Set_T2 (unsigned short usT2);

Calling
conventions

Basic function Set_T2 (byval usT2%) as boolean

T2 can be set with list command Set_Delays during execution of list. Hints

See the hints section for the Set_Delays command for important information on valid
value range and default value.

References Set_Auto_Delay, Set_Jump_Delay, Set_Mark_Delay, Set_Poly_Delay,
Set_Laser_Off_Delay, Set_Laser_On_Delay, Set_T1, Set_T3, Set_Delays

Set_T3

Function Sets FPS-length (YAG-1) or width of laser stand-by pulse (CO2) or for YAG-2 sets the
time from the FPS Pulse to the first laser modulation.

Parameters FPS length (YAG-1) or width of laser stand-by pulse (CO2) or time from FPS Pulse to
laser modulation (YAG-2) as 16 bits, unsigned integer.

Result Function Set_T3 ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Set_T3 (usT3: word): bool;

C bool Set_T3 (unsigned short usT3);

Calling
conventions

Basic function Set_T3 (byval usT3%) as boolean

T3 can be set with list command Set_Delays during execution of list. Hints

See the hints section for the Set_Delays command for important information on valid
value range and default value.

References Set_Auto_Delay, Set_Jump_Delay, Set_Mark_Delay, Set_Poly_Delay,
Set_Laser_Off_Delay, Set_Laser_On_Delay, Set_T1, Set_T2, Set_Delays

 SP-ICE
 RLC

 SP-ICE
 RLC

Chapter 3 Control Commands

52 RAYLASE Commands and Functions MN005 / v1.0.3

Start_Laser_Manually

Function Laser is switched on, if no list is being executed. The current active laser parameters
will be used.

Result Function Start_Laser_Manually ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Start_Laser_Manually: bool;

C bool Start_Laser_Manually (void);

Calling
conventions

Basic function Start_Laser_Manually () as boolean

Hints If a list is being executed the command is ignored and the global error flag is set to
ERR_CMD_NOT_ALLOWED.

References Stop_Laser_Manually

Start_Loop

Function Starts continuous output of both lists.

Result Function Start_Loop ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Start_Loop: bool;

C bool Start_Loop (void);

Calling
conventions

Basic function Start_Loop () as boolean

The command Start_Loop can be used only if both lists are filled with commands,
ready for execution and are not already being executed.

Execution always starts with list 1 and then continues to list 2, then list 1 and so on.

Loop can be finished with Quit_Loop, after the last list command in the active list cur-
rently being executed.

Hints

Loop is performed a defined number of times. See Set_Max_Counts command for
further details.

References Quit_Loop, Set_Max_Counts

Stop_Execution

Function Stops execution of a list immediately, switches off the laser and discards both lists.

Result Function Stop_Execution ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Stop_Execution: bool;

C bool Stop_Execution (void);

Calling
conventions

Basic function Stop_Execution () as boolean

Hints The beam stops immediately at the current position, the laser is turned off and both
lists will be deleted.

References Stop_Execution_NoClear

 SP-ICE
 RLC

 SP-ICE
 RLC

 SP-ICE
 RLC

Control Commands Chapter 3

MN005 / v1.0.3 RAYLASE Commands and Functions 53

Stop_Execution_NoClear

Function Stops execution of a list immediately and switches off the laser.
This command is identical to Stop_Execution except that it does not discard com-
mands from the lists.

Result Function Stop_Execution ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Stop_Execution_NoClear: bool;

C bool Stop_Execution_NoClear (void);

Calling
conventions

Basic function Stop_Execution_NoClear () as boolean

The beam stops immediately at the current position and the laser is turned off. Hints

This command does not delete the lists.

References Stop_Execution

Stop_Laser_Manually

Function Laser is switched off, if no list is being executed.

Result Function Stop_Laser_Manually ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Stop_Laser_Manually: bool;

C bool Stop_Laser_Manually (void);

Calling
conventions

Basic function Stop_Laser_Manually () as boolean

Hints Active laser parameters are used.

References Start_Laser_Manually

Write_DA

Function Outputs an 8 bit value through, D/A converter to the interface signal ANA_OUT.

Parameters Output of 16 bit unsigned integer. Value 0 to 255.

Result Function Write_DA ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Write_DA (value: word): bool;

C bool Write_DA (unsigned short value);

Calling
conventions

Basic function Write_DA (byval value%) as boolean

With this command normally the lamp current of YAG lasers is set Hints

Only the 8 least significant bits define the D/A converter output.

References Write_DA_List, Write_Port

 SP-ICE
 RLC

 SP-ICE
 RLC

 SP-ICE
 RLC

Chapter 3 Control Commands

54 RAYLASE Commands and Functions MN005 / v1.0.3

Write_Port

Function Output to the interfaces.

Output of 16 bits unsigned integer.

26H

Z-Channel

Z-DAC CANNEL1)

28H

O-Channel

P-DAC CANNEL1)

0CH

Port C

Bit 4 = \Mark In Progress2) 3) 4)
Bit 5 = \Remote_EXE_13)
Bit 7 = \Remote_EXE_23)

16 bits6)

0AH

Port B

 8 bits (PB0 - PB7) 5)

Parameter

Valid port
adresses

0EH

Port D

Option7)

Result Function Write_Port ok (TRUE) or not ok (FALSE) as boolean.

Pascal function Write_Port (port, value: word);

C bool Write_Port(unsigned short port, unsigned short value);

Calling
conventions

Basic function Write_Port (byval port%, byval value%) as boolean

This is an asynchronous operation. Care must be taken to ensure that this command
is only used when the controller is not actively marking to avoid conflict with list com-
mands. This is most critical for Port C which is also used by internal timing, but may
apply to any port. The use of Write_Port_List is recommended to ensure absolute
synchronism with other output commands.

Other port addresses than specified above will be ignored.

Output to Z-Channel will be overwritten with the execution of the next list command,
unless 3rd axis correction has been disabled. See Set_Mode control command.

Hints

The whole word is output to the selected port, affecting all the bits. If only some bits
need to be set/reset, previous values sent to other bits must be maintained as well.

References Write_Port_List, Read_Port, Write_DA_List, Write_DA , Set_Mode

 SP-ICE RLC-USB RLC-PCI
1) Scan Head Interface   
2) Restricted Laser / I/O Interface   
3) Laser / I/O Interface   
4) Extended Laser / I/O Interface   
5) Lee compatible Interface   
6) Port B   
7) Port D   

 SP-ICE
 RLC

Error Handling Commands Chapter 4

MN005 / v1.0.3 RAYLASE Commands and Functions 55

4 ERROR HANDLING COMMANDS
The error handling commands described below are listed in alphabetical order.

Get_Error_Message

Function Reads back the error message for the specified error code in the command.
Can be used to create a table with error codes and corresponding messages.

Parameters Error code as 32 bit integer and a pointer to a string variable.

Result Error message as string.

Pascal function Get_Error_Message (iErrorCode:word): char;

C char* Get_Error_Message (int iErrorCode);

Calling
conventions

Basic function Get_Error_Message (byval iErrorCode%) as string

References Get_Last_Error_Message, Get_Last_Error_Code

Get_Last_Error_Code

Function Reads back the last error code that occurred prior to issuing this command.

Result Error code as 16 bits signed integer.

Pascal function Get_Last_Error_Code: int;

C int Get_Last_Error_Code (void);

Calling
conventions

Basic function Get_Last_Error_Code () as integer

References Get_Error_Message, Get_Last_Error_Message

Get_Last_Error_Message

Function Reads back the last error message.

Result Error message as string of characters.

Pascal function Get_Last_Error_Message: char;

C char* Get_Last_Error_Message (void);

Calling
conventions

Basic function Get_Last_Error_Message () as string

References Get_Error_Message, Get_Last_Error_Code

 SP-ICE
 RLC

 SP-ICE
 RLC

 SP-ICE
 RLC

Chapter 4 Error Handling Commands

56 RAYLASE Commands and Functions MN005 / v1.0.3

Error Codes
Error codes with the corresponding messages are given in the following table:

Error Code Description

 0 No error

 1 Not enough memory available

 4 Scan card not initialized

 5 End-of-list command missing

 6 No scan in progress

 7 Action not possible (scan in progress)

 8 Scan already in progress

 9 No vectors available

 10 Invalid vector list

 12 Invalid list index

 13 List incomplete

 14 Could not add list command

 15 Command not allowed now

 16 Parameter out of bounds

 19 Invalid pointer

 20 File not found

 21 Invalid file format

 22 Command ignored

 26 No card active

 28 Card not configured for function

 29 Unknown error

 30 Invalid card number

 36 Card initialization command sequence failed

 37 Function call failed

 40 The card did not execute the command successfully

Undocumented Commands Chapter 5

MN005 / v1.0.3 RAYLASE Commands and Functions 57

5 UNDOCUMENTED COMMANDS
Commands which are dedicated to some special applications are not included in this manual.

Master-Slave
Set_Head_Mask, Get_Head_Mask

PCD
Enable_Custlist

Set_Custlist_Parameters, Get_Custlist_Parameters

Stand-alone version
Load_Corr_File_From_Target_Disk

Output_To_File
Copy_File_To_Target_Disk

Delete_File_On_Target_Disk

Welding
Jump_To_Start_List

Set_JobControl_List
Skip_Var_List, Skip_Var_List_Back

Skip_Counter_List, Set_Counter_List
Read_Port_To_Var_List

JobControl_To_Var_List

3D
Set_3DMode, Reset_3DMode

Set_3DParameters, Get_3DParameters
Jump_Abs_3D, Mark_Abs_3D,

PolA_Abs_3D, PolB_Abs_3D, PolC_Abs_3D

Chapter 6 Unsupported Commands

58 RAYLASE Commands and Functions MN005 / v1.0.3

6 UNSUPPORTED COMMANDS
Some of the control commands in the previous version of this manual are no longer supported
by the SP-ICE software from versions SP-ICE.dll v11231 and SPICERT.RTB v 11424.

These commands are still in the SPIC_Export.h file for compatibility purposes, but, if called
from the application software, return a false flag.

The unsupported commands are
Get_DXDY_Manual
Get_Manual_Move

Get_XY_Manual
Goto_XY
Set_Control_Mode

Set_DXDY_Manual
Set_Manual_Delay

Start_Manual_Move
Start_Manual_Operation

Stop_Manual_Move
Stop_Manual_Operation

Get_SPC1_Mode

The following commands are not implemented in the SP-ICE.dll
Set_Base
Select_List

Select_Valid_List

 Index

MN005 / v1.0.3 RAYLASE Commands and Functions 59

INDEX

C
Control Command

Aut_Change.. 25
Corr_File_Name 26
Disable_Laser... 26
Enable_Laser ... 26
Execute_List_1 ... 27
Execute_List_2 ... 27
Get_Active_Card 28
Get_Counts .. 28
Get_CPU_Type .. 28
Get_Device_Description_String................ 29
Get_DLL_Version 29
Get_Driver_Version 29
Get_Firmware_Version............................. 30
Get_Hardware_Version 30
Get_Ident_Ex.. 30
Get_Jump_Speed..................................... 31
Get_Library_Version................................. 31
Get_Mark_Speed...................................... 31
Get_Mode_Mask 32
Get_SPC1_Version 32
Get_System_Status.................................. 33
Get_Version.. 33
Get_XY_Pos... 33
Init_Scan_Card... 34
Init_Scan_Card_Ex................................... 34
Load_Cor.. 35
Load_Corr_N .. 35
Quit_Loop ... 36
Read_Port .. 36
Read_Status... 37
Remove_Scan_Card 38
Remove_Scan_Card_Ex 38
Restart_List_1 .. 39
Restart_List_2 .. 39
Set_Active_Card....................................... 39
Set_Auto_Delay.. 40
Set_Dig_Gain_Ex 40
Set_Gain... 41
Set_Gain_X .. 42
Set_Gain_Y .. 42
Set_Jump_Delay 43
Set_Jump_Speed 43
Set_Laser_Off_Delay 44
Set_Laser_On_Delay 44
Set_Mark_Delay 44
Set_Mark_Speed...................................... 45
Set_Max_Counts 45
Set_Mode ... 46
Set_Offset_X .. 47
Set_Offset_Y .. 47
Set_Poly_Delay .. 48
Set_Rot_Grad... 48
Set_Speed.. 49
Set_Start_List_1 49

Set_Start_List_2 50
Set_T1 .. 50
Set_T2 .. 51
Set_T3 .. 51
Start_Laser_Manually............................... 52
Start_Loop .. 52
Stop_Execution... 52
Stop_Execution_NoClear.......................... 53
Stop_Laser_Manually 53
Write_DA .. 53
Write_Port... 54

E
Error Command

Get_Error_Message.................................. 55
Get_Last_Error_Code............................... 55
Get_Last_Error_Message......................... 55

L
List Buffers .. 6
List Command

Jump_Abs... 8
Jump_Rel.. 8
Laser_Off .. 9
Laser_On.. 9
Long_Delay... 10
Loop_To_Start_List 10
Mark_Abs.. 11
Mark_Immediately 11
Mark_Rel .. 11
PolA_Abs .. 12
PolA_Rel... 12
PolB_Abs .. 13
PolB_Rel... 13
PolC_Abs.. 14
PolC_Rel... 14
Put_Bitmapline_List 15
Put_Bitmapline_List_Ex............................ 15
Reset_Jump_List 16
Set_Auto_Jump_Delay_List...................... 16
Set_Delays ... 17
Set_Delays_1_2 18
Set_Delays_3_4 18
Set_Delays_5_6 18
Set_Delays_7_8 19
Set_Delays_9_10 19
Set_End_Of_List....................................... 20
Set_Jump_Parameters_List...................... 20
Set_Mark_Parameters_List 21
Set_Wobble_List....................................... 21
Wait_For_Counter_Value_Ex 22
Wait_For_External_Start........................... 22
Write_DA_List... 23
Write_Port_List ... 24

Lists... 6

	INTRODUCTION
	Overview
	Visual Basic Compatibility
	User Application Program
	Lists

	LIST COMMANDS
	CONTROL COMMANDS
	ERROR HANDLING COMMANDS
	UNDOCUMENTED COMMANDS
	UNSUPPORTED COMMANDS

