CRONUS | 3P

Laser Source for Advanced Nonlinear Microscopy

FEATURES

- High pulse energy, high repetition rate, and high average power
- 1250 1800 nm tuning range
- Down to 50 fs pulse duration
- Automated GDD control
- Industrial-grade design
- High output stability

CRONUS-3P is an OPA-based laser source developed specifically for advanced nonlinear microscopy. It provides μJ -level sub-65 fs pulses at repetition rates of up to 2 MHz and tunable from 1.25 to 1.8 μm , thus covering the biological transparency windows at 1.3 μm and 1.7 μm for three-photon microscopy. In addition, CRONUS-3P has integrated group delay dispersion (GDD) control, ensuring optimal pulse duration at the sample, and industrial-grade design to guarantee high short- and long-term output stability.

Typical pulse duration at 1300 nm and 1700 nm

Output power and pulse energy vs wavelength. Pump: 40 W, 1 MHz.

SPECIFICATIONS

Model	CRONUS-3P		
Tuning range	1250 – 1800 nm Single-shot to 2 MHz		
Repetition rate ¹⁾			
	1300 nm	1700 nm	
Pulse duration	< 50 fs	< 65 fs	
Output power	> 1200 mW @ 1 MHz > 800 mW @ 2 MHz	> 750 mW @ 1 MHz > 500 mW @ 2 MHz	
GDD control range ²⁾	-4000 to +9000 fs ²	-12000 to +3500 fs ²	
Beam diameter 3)	2 – 3 mm		
Beam quality (M²)	< 1.4		
Beam ellipticity	> 0.8		
Beam divergence	<1 mrad		
Long-term power stability, 24 h 4)	< 1%		
Pulse-to-pulse energy stability, 1 min 4)	<1%		

OUTPUT WITHOUT COMPRESSOR

Output power	> 1500 mW @ 1 MHz	> 1050 mW @ 1 MHz
	> 1000 mW @ 2 MHz	> 700 mW @ 2 MHz

 $^{^{1)}\,}$ Lower repetition rate and higher pulse energy options available.

Long-term power stability, measured at 1700 nm over 10 h

Beam profile at 1300 nm, 2.5 mm diameter (FWHM)

DRAWINGS

CRONUS-3P drawing

²⁾ Continuously controlled dispersion that can be added before the microscope, i.e., -3000 fs^2 compensates a microscope with $+3000 \text{ fs}^2$.

³⁾ FWHM, measured at compressor output.

⁴⁾ Expressed as NRMSD (normalized root mean squared deviation).